Creating Truth Data to Quantify the Accuracy of Cloud Forecasts from Numerical Weather Prediction and Climate Models

Author:

Hutchison Keith,Iisager BarbaraORCID

Abstract

Clouds are critical in mechanisms that impact climate sensitivity studies, air quality and solar energy forecasts, and a host of aerodrome flight and safety operations. However, cloud forecast accuracies are seldom described in performance statistics provided with most numerical weather prediction (NWP) and climate models. A possible explanation for this apparent omission involves the difficulty in developing cloud ground truth databases for the verification of large-scale numerical simulations. Therefore, the process of developing highly accurate cloud cover fraction truth data from manually generated cloud/no-cloud analyses of multispectral satellite imagery is the focus of this article. The procedures exploit the phenomenology to maximize cloud signatures in a variety of remotely sensed satellite spectral bands in order to create accurate binary cloud/no-cloud analyses. These manual analyses become cloud cover fraction truth after being mapped to the grids of the target datasets. The process is demonstrated by examining all clouds in a NAM dataset along with a 24 h WRF cloud forecast field generated from them. Quantitative comparisons with the cloud truth data for the case study show that clouds in the NAM data are under-specified while the WRF model greatly over-predicts them. It is concluded that highly accurate cloud cover truth data are valuable for assessing cloud model input and output datasets and their creation requires the collection of satellite imagery in a minimum set of spectral bands. It is advocated that these remote sensing requirements be considered for inclusion into the designs of future environmental satellite systems.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3