Experimental Investigation on the Motion of Particle Cloud in Viscous Fluids

Author:

Azimi Amir H.1

Affiliation:

1. Department of Civil Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada e-mail:

Abstract

Laboratory experiments were conducted to study the dynamics of particle clouds in viscous fluids. Different shapes of frontal head and trailing stems were observed, and particle clouds were classified using data mining methodology. The stability of the frontal head of particle clouds was found to be correlated with the nozzle diameter and mass of sand particles in the form of an initial aspect ratio. The formation of particle clusters into a torus and the split of the frontal head into two or three clusters were investigated in detail. The cluster of particles flow through viscous fluid experienced partial separation due to the release of air bubbles from the rear of frontal head. It was observed that the time and location of major particle separation increase linearly with the aspect ratio. The oscillatory motion of the frontal head, caused by an uneven release of air bubbles from the rear of the frontal head, was found to be correlated with the initial aspect ratio. Both amplitude and wavelength exhibited a linear relationship with nondimensional time. The average drag coefficient of particle clouds Cd in viscous fluids was calculated for different aspect ratios, and the results were compared with the drag coefficient of individual particles. It was found that the averaged drag coefficients of particle clouds were smaller than the drag coefficient of individual particles, and Cd slightly increases with the increasing initial aspect ratio.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3