Effects of Impact Energy and Aspect Ratio on the Motion of Particle Clouds in Stagnant Water

Author:

Sabershahraki Maliheh12,Azimi Amir H.1ORCID

Affiliation:

1. Department of Civil Engineering, Lakehead University , Thunder Bay, ON P7B 5E1, Canada

2. Lakehead University

Abstract

Abstract A series of laboratory experiments was conducted to investigate the effects of impact energy and other initial controlling parameters on the motion of particle clouds in stagnant water. Experiments were performed for two median sand diameters of D50 = 0.52 mm and 0.74 mm and nozzle diameters of do = 6 mm and 8 mm. Sand masses were converted to an equivalent pipe length with the same diameter as the nozzle, Lo, and a wide range of aspect ratios, Lo/do, between 2 and 93 was tested. The impact energy of sand particles was controlled by the release height of sand particles, and it was quantified by the nondimensional release height, η, ranging from 1 to 21.5. It was found that particle clouds with higher impact energy had smaller concentration and velocity decay rates. This indicated that by increasing the release height, the momentum transfer between sand particles and the ambient water decreases. The time-series of instantaneous sand velocity were used to determine velocity fluctuations and turbulence intensity of sand particles, and a direct correlation was found between sand velocity fluctuations and aspect ratio in particle clouds. The effects of impact energy on the anatomy of the resulted particle clouds were examined in this study. It was found that the cloud width increased dramatically when the impact energy of sand particles with high aspect ratios (i.e., Lo/do > 39) increased. Furthermore, the dispersion of sand particle began earlier as the kinetic energy of sand particles increased at the water surface.

Publisher

ASME International

Reference37 articles.

1. Experimental Study of Sand and Slurry Jets in Water;J. Hydraul. Eng. ASCE,2010

2. Spreading Hypothesis of a Particle Plume;ASCE, J. Hydraul. Eng.,2016

3. Effects of Velocity Ratio on Dynamics of Sand-Water Coaxial Jets;Int. J. Multiphase Flow,2021

4. Mixing of Twin Particle Clouds in Stagnant Water;ASCE J. Eng. Mech.,2021

5. On the Motion of Single and Twin Oblique Particle Clouds in Stagnant Water;ASME J. Fluids Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3