The Effect of Airfoil Thickness on the Efficiency of Low-Pressure Turbines

Author:

Torre Diego1,Vázquez Raúl2,Armañanzas Leyre,Partida Fernando,García-Valdecasas Guillermo1

Affiliation:

1. Industria de Turbopropulsores S.A., Madrid 28830, Spain

2. Industria de Turbopropulsores S.A., Madrid 28830, Spain; Universidad Politécnica, Madrid 28040, Spain

Abstract

The effect of airfoil thickness on the efficiency of low-pressure (LP) turbines has been investigated experimentally in a multistage turbine high-speed rig. The rig consists of three stages of a state of the art LP turbine. The stages are characterized by a very high hade angle, reverse cut-off design, very high lift, and very high aspect ratio airfoils. Two different sets of stators have been designed and tested. The first set of stators is made of airfoils with a thickness to chord ratio around 10% along the span with the exception of a small areas close to the end walls. In those areas, the thickness has been increased above the previous value to reduce the secondary flows. These types of airfoils have been referred to in the literature as “spoon” airfoils. The second set of stators has been designed to have the same spanwise distribution of pressure coefficient (Cp) on the suction surface than the first set. However, the thickness to chord ratio was increased along the span up to values around 20% to raise the velocity of the flow and to remove any separation bubble on the pressure side. The resulting shape of the profiles is representative of “hollow” airfoils. The velocity triangles, chord distribution, leading and trailing edge locations, and flowpath have been maintained between both sets. They have been tested with the same blades and at the same operating conditions with the intention of determining the impact of the profile thickness on the overall efficiency. The turbine characteristics: sensitivity to speed, specific work, Reynolds number, and purge flows have been obtained for both sets. The comparison of the results suggests that the efficiency of both types of airfoils exhibit the same behavior; no significant differences in the results can be distinguished.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Testing of a Multi-Stage Intermediate Pressure Turbine for Future Geared Turbofans;Journal of Turbomachinery;2022-03-04

2. Manufacturing/In-Service Uncertainty and Impact on Life and Performance of Gas Turbines/Aircraft Engines;Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines;2018-06-22

3. Comparison between aerodynamic designs obtained by human driven and automatic procedures;Aerospace Science and Technology;2018-01

4. Manufacturing and in Service Uncertainty and Impact on Life and Performance;Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3