The Mechanism of Size-Based Particle Separation by Dielectrophoresis in the Viscoelastic Flows

Author:

Zhou Teng1,Deng Yongbo2,Zhao Hongwei3,Zhang Xianman4,Shi Liuyong4,Woo Joo Sang5

Affiliation:

1. Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, Hainan Province, China e-mail:

2. Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, Jilin, China

3. Department of Environmental Science, Hainan University, Haikou 570228, Hainan Province, China

4. Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, Hainan Province, China

5. School of Mechanical Engineering, Yeungnam University, Gyongsan 712-719, South Korea e-mail:

Abstract

Viscoelastic solution is encountered extensively in microfluidics. In this work, the particle movement of the viscoelastic flow in the contraction–expansion channel is demonstrated. The fluid is described by the Oldroyd-B model, and the particle is driven by dielectrophoretic (DEP) forces induced by the applied electric field. A time-dependent multiphysics numerical model with the thin electric double layer (EDL) assumption was developed, in which the Oldroyd-B viscoelastic fluid flow field, the electric field, and the movement of finite-size particles are solved simultaneously by an arbitrary Lagrangian–Eulerian (ALE) numerical method. By the numerically validated ALE method, the trajectories of particle with different sizes were obtained for the fluid with the Weissenberg number (Wi) of 1 and 0, which can be regarded as the Newtonian fluid. The trajectory in the Oldroyd-B flow with Wi = 1 is compared with that in the Newtonian fluid. Also, trajectories for different particles with different particle sizes moving in the flow with Wi = 1 are compared, which proves that the contraction–expansion channel can also be used for particle separation in the viscoelastic flow. The above results for this work provide the physical insight into the particle movement in the flow of viscous and elastic features.

Funder

National Natural Science Foundation of China

National Research Foundation of Korea

Hainan University

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3