Dielectrophoretic motion of a red blood cell in a microfluidic environment: Insights from numerical simulations

Author:

Ranjbaran Azam1ORCID

Affiliation:

1. Independent Researcher , Tehran, Iran

Abstract

This research delves into the dielectrophoresis (DEP) behavior of a biological cell within a sinusoidal-shaped microchannel utilizing the Maxwell stress tensor (MST) theory. A red blood cell (RBC), immersed in a viscoelastic fluid, is studied considering the Oldroyd-B model. The study aims to fill a gap in the literature by examining the DEP characteristics of RBC in a realistic geometric configuration and fluid environment, bridging the divide between theoretical modeling and practical application. This work uniquely explores the DEP behavior of an RBC within a sinusoidal microchannel in the presence of a viscoelastic flow regime, which simulates plasma properties, marking a novel contribution to the field. The two-dimensional numerical model incorporates the finite element method to accurately simulate the DEP effect and describe the behavior of the viscoelastic fluid. Validation results confirm the accuracy of the MST model. Crucially, numerical findings highlight the strong dependence of DEP force on electric potential and fluid permittivity. As a consequence of their heightened levels, there is an associated increase in both the DEP force and velocity. While the augmentation of fluid viscosity merely results in a deceleration of DEP velocity. The study provides valuable insights into the interplay between physical parameters and particle behavior, paving the way for advancements in microfluidic particle manipulation techniques.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3