Enhancement of Film Cooling Effectiveness Using Rectangular Winglet Pair

Author:

Jindal Prakhar1,Agarwal Shubham1,Sharma R. P.2,Roy A. K.1

Affiliation:

1. Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India e-mail:

2. Professor Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India e-mail:

Abstract

This study deals with the film cooling enhancement in a combustion chamber by the use of rectangular winglet vortex generators (VGs). Rectangular winglet pair (RWP) in both the common-flow up and the common-flow down configuration is installed upstream of a coolant injection hole on the lower chamber wall. A three-dimensional numerical approach with complete solution of Navier–Stokes (NS) equations closed by the k–ɛ turbulence model is used for analyzing the effect of VG installation on film cooling effectiveness enhancement. The effect of RWP orientation is investigated to deduce the best configuration which is then optimized in terms of its geometrical parameters including its upstream distance from the hole and the angle it makes with the incoming flow. Results obtained show that a RWP located upstream of the coolant hole in common-flow down configuration gives the best effectiveness enhancement with certain other geometrical parameters specified. A novel “mushroom” adiabatic distribution scheme for film cooling effectiveness and temperature has been discussed in the paper. This characteristic scheme is developed as a result of RWPs' vortices interaction with the coolant inlet jet and the hot mainstream flow. A detailed discussion of the mechanisms and the flow field properties underlying the effectiveness enhancement and other phenomenon observed has also been presented in the paper.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3