Wind Tunnel Probe Into an Array of Small-Scale Horizontal-Axis Wind Turbines Operating at Low Tip Speed Ratio Conditions

Author:

Siram Ojing1,Kumar Ravi2,Saha Ujjwal K.2,Sahoo Niranjan2

Affiliation:

1. School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

2. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

Abstract

Abstract In recent times, the small wind farms consisting of small-scale horizontal-axis wind turbines (SHAWTs) have emerged as suitable candidates for electric power generation. In view of this, an experimental study on the arrays of two SHAWTs has been performed in a wind tunnel to find the individual/combined performance(s) along with the downstream wake assessment. The rotor blades composed of Eppler E216 airfoil and having radius of 120 mm are designed using the blade element momentum theory. The operational limit of tip speed ratio (λ) is kept between 0.5 and 6. The upstream turbine (UsT) is capable to produce a maximum power coefficient (Cpmax) of 0.30 at a wind speed U = 8 m/s, whereas at the same wind speed, the downstream turbine (DsT) produces Cpmax values of 0.12, 0.13, and 0.15 when installed at a distance of 6R, 8R, and 10R from the UsT, respectively. Another notable feature is the change in the operational limit of λ for DsT due to the wake of UsT. The streamwise velocity measurement at the different downstream locations of UsT shows the formation of W-shape velocity deficit within the near wake regime that loses its shape as the distance downstream goes beyond 12R due to ∼60–70% flow recovery.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3