Impingement/Effusion Cooling With Low Coolant Mass Flow

Author:

Oguntade H. I.1,Andrews G. E.2,Burns A. D.2,Ingham D. B.3,Pourkashanian M.3

Affiliation:

1. Kwara State University, Malete, Nigeria

2. University of Leeds, Leeds, UK

3. University of Sheffield, Sheffield, UK

Abstract

A low coolant mass flow impingement/effusion design for a low NOx combustor wall cooling application was predicted, using conjugate heat transfer (CHT) computational fluid dynamics (CFD). The effusion geometry had 4306/m2 effusion holes in a square array with a hole diameter of D and pitch of X and X/D of 1.9. It had previously been shown experimentally and using CHT/CFD to have the highest adiabatic and overall cooling effectiveness for this number of effusion holes. The effect of adding an X/D of 4.7 impingement jet wall with a 6.6 mm impingement gap, Z, and Z/D of 2.0, on the overall cooling effectiveness was predicted for several coolant mass flow rates, G kg/sm2bar. At low G the internal wall heat transfer dominated the overall cooling effectiveness. The addition of impingement cooling to effusion cooling gave only a small increase in the overall cooling effectiveness at all G at 127mm downstream of the start of effusion cooling. An overall cooling effectiveness >0.7 was predicted for a low G of 0.30 kg/sm2bar. This represents about 15% of the combustion air for a typical industrial gas turbine combustor and design changes to reduce this further were suggested based on the predictions of this geometry. The main benefit of the impingement cooling was at the start of the effusion cooling, where the overall cooling effectiveness was dominated by the internal wall impingement and effusion cooling. The separate effusion and impingement cooling were also predicted for comparison with their combination. This showed that the combination of impingement and effusion was not the sum of the individual effusion and impingement heat transfer. The predictions showed that the aerodynamic interactions decreased the effusion and impingement internal wall heat transfer.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3