Numerical Investigation of the Effects of the Hole Inclination Angle and Blowing Ratio on the Characteristics of Cooling and Stress in an Impingement/Effusion Cooling System

Author:

Li Haiwang,Zhang Dawei,You RuquanORCID,Zou Yifan,Liu Song

Abstract

Due to the uneven temperature field and temperature gradient introduced by an efficient cooling structure, the analysis of the stress field is necessary. In this study, the cooling characteristics and stress characteristics such as the thermal stress and thermomechanical stress of an impingement/effusion cooling system were investigated by employing a fluid–thermal-structure coupling simulation method. The effects of film hole injection angle (30°–90°) and blowing ratio (0.5–2.0) were studied. The results showed that the film hole shape and the non-uniform temperature field introduced by the cooling structure had a great influence on the stress field distribution. With the increase in the blowing ratio, not only the overall cooling effectiveness of the cooling system increased, but the maximum thermal stress and thermomechanical stress near film holes also increased. The cases with a smaller inclination angle could provide a better cooling performance, but caused a more serious stress concentration of the film hole. However, the thermal stress difference at the leading and trailing edges of the film hole increased with a decreasing inclination angle. The cases with a = 30° and 45° showed serious thermal stress concentration near the hole’s acute region.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Defense Industrial Technology Development Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3