Nozzle Guide Vane Film Cooling Effectiveness for Radial Showerheads With Restricted Cooling Hole Surface Angles

Author:

Holgate Nicholas E.1,Ireland Peter T.1,Self Kevin P.2

Affiliation:

1. University of Oxford, Oxford, UK

2. Rolls-Royce plc, Bristol, UK

Abstract

Adiabatic film cooling effectiveness measurements are made on nozzle guide vane leading edges in an engine-realistic flow environment. The tested leading edges feature radial showerheads with different spanwise distributions of hole surface angle. The showerheads blow towards the midspan, except for one model with showerhead holes orthogonal to the vane surface. The results show that low surface angle radial showerhead holes generate high effectiveness within their rows and further downstream, but neglect the stagnation region lying between the two most upstream cooling hole rows. This downstream effectiveness gain is due to both the continued surface attachment of this coolant as it progresses downstream, and its beneficial interactions with downstream cooling jets. Moderate radial showerhead surface angles cause moderate coolant jet penetration into the mainstream, which promotes near-surface mixing of the coolant with the mainstream, increasing stagnation region effectiveness. The mixing effect is enhanced by the intense turbulence generated by combustor dilution jets. High surface angles may cause the stagnation region coolant to penetrate too far for either of these gains to be realised. Considering also the presence of endwall film cooling, these effects, taken together, suggest the superiority of radial showerheads which blow towards the midspan, as against those which blow towards each endwall. Surface temperature data is acquired by a novel infrared thermography technique which permits measurement of both heat transfer coefficient and film effectiveness from a single heated test.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3