Oil Film Thickness Measurements on Surfaces Close to an Aero-Engine Ball Bearing Using Optical Techniques

Author:

Hee Jee Loong1,Santhosh R.1,Simmons Kathy1,Johnson Graham1,Hann David1,Walsh Michael2

Affiliation:

1. University of Nottingham, Nottingham, UK

2. Rolls Royce plc, Derby, UK

Abstract

In a civil aero-engine transmission system a number of bearings are used for shaft location and load support. A bespoke experimental test facility in the University of Nottingham’s Gas Turbine and Transmissions Research Centre (G2TRC) was created to investigate oil shedding from a location bearing. An engine representative ball bearing was installed in the rig and under-race lubrication was supplied via under-race feed to three locations under the inner race and cage. The oil was supplied in an engine representative manner but the delivery system was modified to provide circumferentially even flow. An electromagnetic load system was designed and implemented to allow engine representative axial loads between 5 and 35 kN to be applied to the bearing. In this phase of testing the rig was operated at shaft speeds between 1,000 rpm and 7,000 rpm for a range of oil flow rates and low and high load conditions. The rig was designed with good visual access and high speed imaging was used to investigate film formation and movement on surfaces close to the bearing. This paper presents images and qualitative observations of thin film formed on the static surfaces forming the outer-periphery of the bearing compartment as well as the gap between orbiting cage and static outer race. Quantitative film thickness was obtained at two circumferential locations (90° and 270° from top dead centre) and three axial locations, through sophisticated analysis of the high speed images. The effect on film thickness of the varied parameters rotational speed, axial load and oil feed input flow rate are presented in this paper. It was observed that for all axial planes of measurement in both co-current and counter-current regions film thickness decreases with increase in shaft rotational speed. At 5,000 and 7,000 rpm film thicknesses are around 0.75 mm – 1 mm and are similar at 90° and 270°; at 3,000 rpm films tend to be somewhat thicker at around 1.5 mm – 2 mm and are thicker in the counter current region, particularly closer to the bearing. It is suggested that at higher shaft speeds interfacial shear dominates whereas at lower speed the effect of gravity in slowing the film in the counter-current region causes a measureable difference. It was further observed that increasing the input oil flow rate from 5.2 litres per minute to 7.3 litres per minute did not produce significant effect on film thickness. However, the increase of axial bearing load from 10 kN to 30 kN yielded thicker films at the location above the cage. In all cases there was waviness on the film surface at the bearing outer periphery; imaging was not sufficient to see if the film surface close to the bearing is wavy.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3