Using Nonlinear Kinematic Hardening Material Models for Elastic–Plastic Ratcheting Analysis

Author:

Rudolph Jürgen1,Gilman Tim2,Weitze Bill2,Willuweit Adrian1,Kalnins Arturs3

Affiliation:

1. AREVA GmbH, Henri-Dunant-Strasse 50, Erlangen 91058, Germany e-mail:

2. Structural Integrity Associates, Inc., 5215 Hellyer Avenue, Suite 210, San Jose, CA 95138 e-mail:

3. Emeritus Professor of Mechanics Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015 e-mail:

Abstract

Applicable design codes for power plant components and pressure vessels demand for a design check against progressive plastic deformation. In the simplest case, this demand is satisfied by compliance with shakedown rules in connection with elastic analyses. The possible noncompliance implicates the requirement of ratcheting analyses on elastic–plastic basis. In this case, criteria are specified on maximum allowable accumulated growth strain without clear guidance on what material models for cyclic plasticity are to be used. This is a considerable gap and a challenge for the practicing computer-aided engineering engineer. As a follow-up to two independent previous papers PVP2013-98150 ASME (Kalnins et al., 2013, “Using the Nonlinear Kinematic Hardening Material Model of Chaboche for Elastic-Plastic Ratcheting Analysis,” ASME Paper No. PVP2013-98150.) and PVP2014-28772 (Weitze and Gilman, 2014, “Additional Guidance for Inelastic Ratcheting Analysis Using the Chaboche Model,” ASME Paper No. PVP2014-28772.), it is the aim of this paper to close this gap by giving further detailed recommendation on the appropriate application of the nonlinear kinematic material model of Chaboche on an engineering scale and based on implementations already available within commercial finite element codes such as ANSYS® and ABAQUS®. Consistency of temperature-dependent runs in ANSYS® and ABAQUS® is to be checked. All three papers together constitute a comprehensive guideline for elastoplastic ratcheting analysis. The following issues are examined and/or referenced: (1) application of monotonic or cyclic material data for ratcheting analysis based on the Chaboche material model, (2) discussion of using monotonic and cyclic data for assessment of the (nonstabilized) cyclic deformation behavior, (3) number of backstress terms to be applied for consistent ratcheting results, (4) consideration of the temperature dependency (TD) of the relevant material parameters, (5) consistency of temperature-dependent runs in ANSYS® and ABAQUS®, (6) identification of material parameters dependent on the number of backstress terms, (7) identification of material data for different types of material (carbon steel, austenitic stainless steel) including the appropriate determination of the elastic limit, (8) quantification of conservatism of simple elastic-perfectly plastic (EPP) behavior, (9) application of engineering versus true stress–strain data, (10) visual checks of data input consistency, and (11) appropriate type of allowable accumulated growth strain. This way, a more accurate inelastic analysis methodology for direct practical application to real world examples in the framework of the design code conforming elastoplastic ratcheting check is proposed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3