Effect of microstructural constituents and morphological characteristics on low cycle fatigue behaviour of inter-critically annealed 20MnMoNi55 steel

Author:

Basu Parichay1,Acharyya Sanjib K1,Sahoo Prasanta1ORCID

Affiliation:

1. Department of Mechanical Engineering, Jadavpur University, Kolkata, India

Abstract

The effect of varying microstructural parameters on the cyclic behaviour of dual-phase steels was studied on the basis of experimental and micromechanical finite-element simulated results. The initial bainitic morphology of as-received 20MnMoNi55 steel was transformed into ferrite and martensite through proper inter-critical heat treatment procedures. Strain-controlled low cycle fatigue tests were conducted at room temperature with different strain amplitudes at a specific strain rate of 10−3/s. The cyclic stress–strain curve, obtained through joining the peak stresses of hysteresis loops corresponding to different strain amplitude, shows an increase in strain hardening with an increase in volume fraction of martensite. Whereas the rate of cyclic softening, considering the decrease in stress amplitude with respect to elapsed cycles, increases with increasing strain amplitude. Inclusive of all affecting microstructural parameters, an original microstructure-based representative volume element associated with a crystal plasticity-based material model was adopted for conducting micromechanical finite-element simulation. In addition to several parameters associated with a crystal plasticity model, consideration of initial geometrically necessary dislocation density in constituent phases resulted in the accurate prediction of a hysteresis loop at low strain amplitude as compared with the experimental results. A variation of stress triaxiality built up in ferrite matrix with martensite fraction along with deformation inhomogeneity between ferrite and martensite was also observed through a strain partitioning phenomenon obtained from finite-element simulated results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3