Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597
Abstract
Subambient temperature operations of advanced semiconductor devices offer many benefits, including improved reliability, reduced leakage currents, and enhanced signal to noise ratios. We discuss a new design concept for compact solid-state refrigerators based on the electrocaloric (EC) effect. The EC refrigerators are attractive because they may approach the Carnot efficiency more closely than Peltier coolers, which involve intrinsically irreversible processes. To address parasitic losses and other practical considerations that limit the actual performance of EC coolers, we incorporate laterally interdigitated electrode arrays with high effective thermal conductivity and switchable thermal interfaces with high switching ratios and high off-state thermal resistance. Numerical simulations are used to quantify the impact of various design parameters and the expected performance of the module, focusing in particular on the heat diffusion time and RC thermal time constant. Based on the material properties reported in the literature, we project that cooling power densities >10 W/cm2 may be achieved across ΔT of the order of 10 K at coefficient of performance (COP)>10. The present work motivates further experimental studies to develop advanced electrocaloric materials and fabricate/test cooling modules to assess the feasibility of their practical application.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献