Experimental Investigation of the Interblade Flow in a Kaplan Runner at Several Operating Points Using Laser Doppler Anemometry

Author:

Amiri Kaveh1,Mulu Berhanu2,Cervantes Michel J.34

Affiliation:

1. Department of Engineering Science and Mathematics, Luleå University of Technology, Luleå 97187, Sweden e-mail:

2. Vattenfall Research and Development, Älvkarleby 81470, Sweden e-mail:

3. Professor Department of Engineering Science and Mathematics, Luleå University of Technology, Luleå 97187, Sweden;

4. Department of Energy and Process Engineering, Water Power Laboratory, Norwegian University of Science and Technology, Trondheim 7491, Norway e-mail:

Abstract

This paper presents laser Doppler anemometry (LDA) measurements within the runner blade channels and at the runner outlet of a Kaplan turbine model. The model was investigated at six operating points located on two propeller curves of the turbine to study the flow condition during on-cam and off-cam operations. Main and secondary flows within and after the runner were analyzed, and the effects of the hub and tip clearances on the velocity fields within and after the runner were evaluated. Operation of the turbine at flow rates that are lower than the designed rate for the corresponding propeller curve resulted in vortex breakdown and the formation of a rotating vortex rope (RVR). The RVR formation produced an asymmetrical velocity distribution within and after the runner. The results demonstrated the occurrence of an oscillating flow with the same frequency as the vortex rope within the blade channels located upstream of the RVR. This results in an asymmetric flow through the runner and oscillating forces on the runner blades. The measured velocities indicated that the geometrical asymmetries in the runner manufacturing process resulted in various flow asymmetries at the measured sections. The asymmetries were up to 3% within the runner and 7% at the runner outlet.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3