Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades

Author:

Sjolander S. A.1,Amrud K. K.1

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, Carleton University, Ottawa, Canada K1S 5B6

Abstract

The paper examines in detail the structure of the tip leakage flow and its effect on the blade loading in a large-scale planar cascade of turbine blades. The tip clearance was varied from 0.0 to 2.86 percent of the blade chord. One of the blades is instrumented with 14 rows of 73 static taps which allowed a very detailed picture of the loading near the tip to be obtained. In addition to the measurements, extensive flow visualization was conducted using both smoke and surface oil flow. A new feature found in the present experiment was the formation of multiple, discrete tip-leakage vortices as the clearance was increased. Their presence is clearly evident from the surface oil flow and they account for the multiple suction peaks found in the blade pressure distributions. Integration of the pressure distributions showed that for larger values of the clearance the blade loading increases as the tip is approached and only begins to decline very near the tip. The increase was found to occur primarily in the axial component of the force.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on flow characteristics of leakage in the last stage inner blade tip clearance of steam turbine;AIP Advances;2023-05-01

2. Effect of wear damage on aero-thermal performance of the film-cooled squealer tip in a turbine stage;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-04-26

3. Effect of tip geometry on the performance of low-speed axial flow fan;International Journal of Refrigeration;2022-02

4. Effect of tip clearance on cavitating flow of a hydraulic axial turbine applied in turbopump;International Journal of Mechanical Sciences;2022-01

5. Aerodynamics of a partial shrouded low-speed axial flow fan;International Journal of Refrigeration;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3