Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays

Author:

Panzer M. A.1,Zhang G.2,Mann D.2,Hu X.3,Pop E.4,Dai H.2,Goodson K. E.1

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Room 101, Building 530, 440 Escondido Mall, Stanford, CA 94305

2. Department of Chemistry, Stanford University, Room 125, William Keck Science Building, Stanford, CA 94305

3. Intel Corporation, 5000 W Chandler Blvd., Chandler, AZ 85226

4. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2918

Abstract

Owing to their high thermal conductivities, carbon nanotubes (CNTs) are promising for use in advanced thermal interface materials. While there has been much previous research on the properties of isolated CNTs, there are few thermal data for aligned films of single wall nanotubes. Furthermore, such data for nanotube films do not separate volume from interface thermal resistances. This paper uses a thermoreflectance technique to measure the volumetric heat capacity and thermal interface resistance and to place a lower bound on the internal volume resistance of a vertically aligned single wall CNT array capped with an aluminum film and palladium adhesion layer. The total thermal resistance of the structure, including volume and interface contributions, is 12m2KMW−1. The data show that the top and bottom interfaces of the CNT array strongly reduce its effective vertical thermal conductivity. A low measured value for the effective volumetric heat capacity of the CNT array shows that only a small volume fraction of the CNTs participate in thermal transport by bridging the two interfaces. A thermal model of transport in the array exploits the volumetric heat capacity to extract an individual CNT-metal contact resistance of 10m2K1GW−1 (based on the annular area Aa=πdb), which is equivalent to the volume resistance of 14nm of thermal SiO2. This work strongly indicates that increasing the fraction of CNT-metal contacts can reduce the total thermal resistance below 1m2KMW−1.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3