Fluid End Blocks: Numerical Analysis of Autofrettage and Reautofrettage Based Upon a True Material Model

Author:

Hu Zhong1,Parker Anthony P.2

Affiliation:

1. Mechanical Engineering Department, South Dakota State University , Brookings, SD 57007

2. Center for Defence Engineering, University of Cranfield at the Defence Academy of the United Kingdom , Shrivenham, Swindon SN6 8LA, UK

Abstract

AbstractFluid end blocks (FEBs) are the most important components of hydraulic fracturing pumps. A potential important application of the hydraulic autofrettage process (HAP) is to strengthen the fatigue-prone FEBs. This creates a favorable compressive residual stress field near to the critical surface locations within the component and serves to increase its pressure-bearing capacity and/or improve lifetime. This requires a fundamental understanding and modeling of the complex mechanics of the HAP in order to accurately predict such residual stresses. The key outstanding modeling issue is the complex material behavior, dominated by the Bauschinger effect and associated with reversed yielding. This effect differs throughout the FEB. It has been modeled for plane axisymmetric cylinders but has not previously been incorporated into FEB analyses. In this paper, a newly developed finite element analysis (FEA)-based user programable function (UPF), featuring true material constitutive behavior, i.e., replicating an existing Bauschinger-effect characterization (BEC), is adopted to accurately simulate the HAP and quantitatively investigate the stress–strain evolution and residual stress fields throughout the FEB. This simulation is then compared with FEA modeling by a traditional bilinear kinematic hardening material model to indicate the importance of the accuracy of the material constitutive model in determining appropriate residual stresses and strains. An autofrettage pressure of 500 MPa generally achieves net compressive hoop stresses at each of four critical crossbore location. Finally, a prospective re-autofrettage sequence is described; approximate modeling suggests an improvement that might permit operation at higher working pressure.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3