Affiliation:
1. Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62025 USA
Abstract
Abstract
In this paper, a bifurcation tree of period-1 to period-8 motions in a nonlinear Jeffcott rotor system is obtained through the discrete mapping method. The bifurcations and stability of periodic motions on the bifurcation tree are discussed. The quasi-periodic motions on the bifurcation tree are caused by two (2) Neimark bifurcations of period-1 motions, one (1) Neimark bifurcation of period-2 motions and four (4) Neimark bifurcations of period-4 motions. The specific quasi-periodic motions are mainly based on the skeleton of the corresponding periodic motions. One stable and one unstable period-doubling bifurcations exist for the period-1, period-2 and period-4 motions. The unstable period-doubling bifurcation is from an unstable period-m motion to an unstable period-2m motion, and the unstable period-m motion becomes stable. Such an unstable period-doubling bifurcation is the 3rd source pitchfork bifurcation. Periodic motions on the bifurcation tree are simulated numerically, and the corresponding harmonic amplitudes and phases are presented for harmonic effects on periodic motions in the nonlinear Jeffcott rotor system. Such a study gives a complete picture of periodic and quasi-periodic motions in the nonlinear Jeffcott rotor system in the specific parameter range. One can follow the similar procedure to work out the other bifurcation trees in the nonlinear Jeffcott rotor systems.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献