Study on the Nonlinear Dynamic Behavior of Rattling Vibration in Gear Systems
Author:
Liu Yang,Jiao Yinghou,Qi Shiyuan,Yu Guangbin,Du Mengdi
Abstract
To reveal the nonlinear dynamic behavior of gear rattling vibration caused by gear backlash, a 2-DOF oscillator model with spring and damping elements was established. Based on the theory of discontinuous dynamical systems, the phase plane of gear motion was divided into three parts: the domain of tooth surface meshing motion, the domain of free motion and the domain of tooth back meshing motion. Introducing the global mapping and local mapping dynamics method, the process of gear teeth from impact to meshing and then impact and meshing was accurately described. The influence of different restitution coefficients on gear impact-meshing motion was studied by numerical simulation. The results showed that the grazing bifurcation caused by gear backlash will lead to complex mapping structures of the system and even chaos. The restitution coefficient directly affects the impact-meshing behavior. The introduction of meshing stiffness and restitution coefficient can reasonably characterize the elastic deformation and energy loss during gear meshing, which provides a theoretical model for the application of the theory of discontinuous dynamical systems to a more complex multi-degree of freedom flexible contact gear transmission system.
Funder
National Natural Science Foundation of China
Heilongjiang Key Research and Development Plan
Heilongjiang Province Major Scientific and Technological Achievements Transformation Project
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献