A Plexiglas Research Pump With Calibrated Magnetic Bearings/Load Cells for Radial and Axial Hydraulic Force Measurement

Author:

Baun D. O.1,Flack R. D.1

Affiliation:

1. Department of Mechanical Aerospace and Nuclear Engineering, University of Virginia, Charlottesville, VA 22903-2442

Abstract

A research pump intended for both flow visualization studies and direct measurement of hydrodynamic radial and axial forces has been developed. The impeller and the volute casing are constructed from Plexiglas which facilitates optical access for laser velocimetry measurements of the flow field both inside the impeller and in the volute casing. The pump housing is designed for flexibility allowing for each interchange of impellers and volute configurations. The pump rotor is supported by three radial magnetic bearings and one double acting magnetic thrust bearing. The magnetic bearings have been calibrated to characterize the force versus coil current and air gap relationship for each bearing type. Linear calibration functions valid for rotor eccentricities of up to 2/3 of the nominal bearing clearances and force level of ±58 N (13 lbf) and ±267 N (60 lbf) for the radial and axial bearings, respectively, were found. A detailed uncertainty analysis of the force calibration functions was conducted such that meaningful uncertainty bounds can be applied to in situ force measurements. Hysteresis and eddy current effects were quantified for each bearing such that their effect on the in situ force measurements could be assessed. By directly measuring the bearing reaction forces it is possible to determine the radial and axial hydraulic loads acting on the pump impeller. To demonstrate the capability of the magnetic bearings as active load cells representative hydraulic force measurements for a centered 4 vane 16 degree log spiral radial flow impeller operating in a single tongue spiral volute casing were made. At shut-off a nondimensional radial thrust of 0.084 was measured. A minimum nondimensional radial thrust of about 0.007 was observed at the nominal design flow. The nondimensional radial thrust increased to about 0.019 at 120 percent of design flow. The nondimensional axial thrust had a maximum at shut-off of 0.265 and decreased steadily to approximately 0.185 at 120 percent of design flow. Two regions of increasing axial thrust, in the flow range 75 to 100 percent of design flow, were observed. The measurements are compared to radial and axial force predictions using classical force models. The direct radial force measurements are compared to a representative set of radial force measurements from the literature. In addition, the directly measured radial force at design flow is compared to a single representative radial force measurement (obtained from the literature) calculated from the combination of static pressure and net momentum flux distribution at the impeller exit.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3