Analysis of the axial force distribution characteristics of multistage pumps and its correlation with hydraulic property

Author:

Chen Qian123ORCID,Lihuan Yang1ORCID,Zhipeng Qi2,Congxin Yang1

Affiliation:

1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China

2. Shouhang Hi-Tech Energy Technology Co., Ltd., Lanzhou, Gansu, China

3. Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, Sichuan, china

Abstract

As the centrifugal pump is running, the fluid usually flows into the impeller along pump shaft, and the fluid flows out radially by the force of the impeller. The force is mutual, so the impeller is also subjected to the reaction force of the fluid, but the distribution of this force on the blades is uneven. In addition, the front and rear shrouds of the impeller are asymmetric, which are the main causes of axial force. This paper adopts numerical calculation method studying the mechanism of axial force of impeller at all stages of multistage pump at various working conditions, and exploring the formation mechanism of shroud pressure differential force and blade twisting axial force and its variation laws of similarities and differences, analyzing the steady state and transient characteristics between axial force and hydraulic property of double-casing multistage pump. The results show that the rotational angular velocity of the fluid in the front and rear pump chamber at each stage impeller is distributed along the axial direction in three regions, the regions are pump body boundary layer, core region, and impeller boundary layer. The working surface and back surface of the blade twist have the high and low axial force area, and its distribution is staggered, at the same number of stages, the greater the flow rate, the smaller the blade twisting axial force. The shroud pressure differential force with the increase of impeller stages presents a linear increasing trend, conforms to the principle of linear superposition of cover pressure differential force. The total axial force pulsation of multi-stage pump is related to the number of secondary impeller blades, its primary frequency coincides with the secondary impeller blade frequency, increasing the flow rate can reduce the multi-stage pump axial force pulsation amplitude. The pulsation period of single-stage impeller head and efficiency are related to the number of impeller blades, the smaller the number of impeller stages, the stronger the pressure dynamic, and static interference effect of the impeller inlet and outlet. Rotation of the secondary impeller causes dynamic and static interference, which is the main reason for the pulsation of the axial force coefficient in double-casing multistage pumps, the pulsation intensity is related to the periodic generation and shedding of the blade vortex. The results of the study can be used as a reference for optimizing the axial force of double-casing multistage pumps.

Funder

Open Research Subject of Key Laboratory of Fluid Machinery and Power Machinery (Xihua University), Ministry of Education

Lanzhou University of Technology Hongliu outstanding youth

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3