The Needle With Lancet Point: Geometry for Needle Tip Grinding and Tissue Insertion Force

Author:

Wang Yancheng1,Tai Bruce L.1,Chen Roland K.1,Shih Albert J.2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

Abstract

The grinding procedure and setup, the cutting edge inclination and rake angles of the needle with lancet point (NLP), and the NLP tissue insertion force are investigated in this paper. The NLP is the most commonly used needle tip geometry. However, there is a lack of research on the NLP grinding and cutting edge characteristics. In this study, a four-step grinding procedure and a mathematical model to calculate the inclination and rake angles along the cutting edge of the NLP are developed. Three cases of NLP are defined based on the relative position of the lancets. Prototype NLP for each case was produced and analyzed. Compared to the regular bias bevel needle, grinding two lancets in NLP can increases the inclination angle, particularly at the needle tip. Experiments with needle insertion into the porcine liver were conducted and results showed that NLP could achieve over 40% reduction of the initial peak needle insertion force compared to that of the regular bias bevel needle tip.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3