Spatial sensitivity distribution assessment and Monte Carlo simulations for needle‐based bioimpedance imaging during venipuncture using the finite element method

Author:

Atmaca Ömer12ORCID,Liu Jan1ORCID,Ly Toni J.13ORCID,Bajraktari Flakë1ORCID,Pott Peter P.1ORCID

Affiliation:

1. Institute of Medical Device Technology (IMT) University of Stuttgart Baden‐Württemberg Germany

2. Institute of Applied Optics (ITO) University of Stuttgart Stuttgart Baden‐Württemberg Germany

3. Fraunhofer Institute for Manufacturing Engineering and Automation (IPA) Stuttgart Baden‐Württemberg Germany

Abstract

AbstractDespite being among the most common medical procedures, needle insertions suffer from a high error rate. Impedance measurements using electrode‐equipped needles offer promise for improved tissue targeting and reduced errors. Impedance visualization usually requires an extensive pre‐measured impedance dataset for tissue differentiation and knowledge of the electric fields contributing to the resulting impedances. This work presents two finite element simulation approaches for both problems. The first approach describes the generation of a multitude of impedances with Monte Carlo simulations for both, homogeneous and inhomogeneous tissue to circumvent the need to rely on previously measured data. These datasets could be used for tissue discrimination. The second method describes the simulation of the spatial sensitivity distribution of an electrode layout. Two singularity analysis methods were employed to determine the bulk of the sensitivity within a finite volume, which in turn enables consistent 3D visualization. The modeled electrode layout consists of 12 electrodes radially placed around a hypodermic needle. Electrical excitation was simulated using two neighboring electrodes for current carriage and voltage pickup, which resulted in 12 distinct bipolar excitation states. Both, the impedance simulations and the respective singularity analysis methods were compared with each other. The results show that the statistical spread of impedances is highly dependent on the tissue type and its inhomogeneities. The bounded bulk of sensitivities of both methods are of similar extent and symmetry. Future models should incorporate more detailed tissue properties such as anisotropy or changing material properties due to tissue deformation to gain more accurate predictions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3