Affiliation:
1. Argonne National Laboratory, Lemont, IL
2. Illinois Institute of Technology, Chicago, IL
Abstract
Gasoline compression ignition (GCI) using a single gasoline-type fuel for port fuel and direct injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation (EGR)) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of EGR appears more practical. Furthermore, for high temperature GCI, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high temperature GCI combustion using EEE gasoline. Engine testing was conducted at an engine speed of 1038 rpm and brake mean effective pressure (BMEP) of 14 bar. Port fuel and direct injection strategies were utilized to increase the premixed combustion fraction. The impact on engine performance and emissions with respect to varying the injection and intake operating parameters was quantified within this study. A combined effect of reducing heat transfer and increasing exhaust loss resulted in a flat trend of brake thermal efficiency (BTE) when retarding direct injection timing, while increased port fuel mass improved BTE due to advanced combustion phasing and reduced heat transfer loss. Overall, varying intake valve close timing, EGR, intake pressure and temperature with the current pressure rise rate and soot emissions constraint was not effective in improving BTE, as the benefit of low heat transfer loss was always offset by increased exhaust loss.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献