A Novel Internal Model-Based Tracking Control for a Class of Linear Time-Varying Systems

Author:

Zhang Zhen1,Sun Zongxuan1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, Twin Cities Campus, Minneapolis, MN 55455

Abstract

Abstract This paper provides a novel method of constructing an internal model-based design of reference tracking and/or disturbance rejection for a class of linear time-varying plants with a known linear time invariant (LTI) exosystem. It is shown how the realization of an appropriate time-varying internal model can be constructed by means of a novel feedback mechanism. The design of the internal model consists of two ingredients: (1) a time-varying system immersion of the exosystem, and (2) an automatic generation of the desired control input to render the error-zeroing subspace invariant, based on the complete knowledge of the plant model. The important features of the proposed method lie in that the tracking problem setup and the proposed feedback mechanism allow us to avoid explicitly calculating the desired input, which keeps the regulated error identically at zero. Moreover the time-varying immersion is guaranteed to hold for the class of plant models under consideration. These features significantly broaden the range of applications of the proposed method, and simplify the control implementation process.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference26 articles.

1. The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems;Davison;IEEE Trans. Autom. Control

2. The Linear Multivariable Regulator Problem;Francis;SIAM J. Control Optim.

3. The Internal Model Principle of Control Theory;Francis;Automatica

4. Output Regulation of Nonlinear Systems;Isidori;IEEE Trans. Autom. Control

5. High Accuracy Control of a Proton Synchrotron Magnet Power Supply;Inoue

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3