Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size

Author:

Li Chen1,Peterson G. P.2

Affiliation:

1. Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace and Nuclear Engineering Troy, NY 12180

2. University of Colorado, Boulder, CO 80309

Abstract

Presented here is the second of a two-part investigation, designed to systematically identify and investigate the parameters affecting the evaporation from and boiling within, thin capillary wicking structures with a range of volumetric porosities and mesh sizes. The experimental studies were investigated under steady-state conditions at atmospheric pressure. Part I of the investigation described the wicking fabrication process and experimental test facility, and focused on the effects of the capillary wick thickness (ASME J. Heat Transfer., 128, pp. 1312–1319). In Part II, we examine the effects of variations in the volumetric porosity and the mesh size. The experimental results presented here indicate that the critical heat flux (CHF) was strongly dependent on both the mesh size and the volumetric porosity; while the evaporation/boiling heat transfer coefficient was significantly affected by mesh size, but not strongly dependent on the volumetric porosity. The experimental results further illustrate that the menisci at the CHF are located in the corners, formed by the wire and the heated wall and between the wires in both the vertical and horizontal directions. The minimum value of these three menisci determined the maximum capillary pressure generated through the capillary wick. The experimental results and observations are systematically presented and analyzed, and the local bubble and liquid vapor interface dynamics are examined theoretically. Based on the relative relationship between the heat flux and superheat, classic nucleate boiling theory, and the visual observations of the phase-change phenomena, as well as by combining the results obtained here with those obtained in Part I of the investigation, the evaporation/boiling heat transfer regimes in these capillary wicking structures are identified and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference17 articles.

1. Evaporation/Boiling on a Capillary Wick (I)—Wick Thickness Effects;Li;ASME J. Heat Transfer

2. Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment;Liter;Int. J. Heat Mass Transfer

3. Heat Transfer in Capillary Wick Considering Phase Change and Capillarity—The Heat Pipe Effect;Udell;Int. J. Heat Mass Transfer

4. The Heat Transfer Limit of Step-Graded Metal Felt Heat Pipe Wicks;Williams;Int. J. Heat Mass Transfer

5. Some Peculiarities of Vaporization Process in a Single Cell of the Heat Pipe Wick;Tolubinsky

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3