A heat transfer model for liquid film boiling on micro-structured surfaces

Author:

Li Pengkun1,Zou Qifan1,Liu Xiuliang1,Yang Ronggui12

Affiliation:

1. School of Energy and Power Engineering, Huazhong University of Science and Technology , Wuhan 430074 , China

2. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology , Wuhan 430074 , China

Abstract

ABSTRACT High heat transfer coefficient (HTC) and critical heat flux (CHF) are achieved in liquid film boiling by coupling vibrant vapor bubbles with a capillary liquid film, which has thus received increased interest for thermal management of high-power electronics. Although some experimental progress has been made, a high-fidelity heat transfer model for liquid film boiling is lacking. This work develops a thermal-hydrodynamic model by considering both evaporation atop the wick and nucleate boiling inside the wick to simultaneously predict the HTC and CHF. Nucleate boiling is modeled with microlayer evaporation theory, where a unified scaling factor is defined to characterize the change of microlayer area with heat flux. The scaling factor η is found to be independent of wicking structure and can be determined from a few measurements. This makes our model universal to predict the liquid film boiling heat transfer for various micro-structured surfaces including micropillar, micropowder, and micromesh. This work not only sheds light on understanding fundamental mechanisms of phase-change heat transfer, but also provides a tool for designing micro-structured surfaces in thermal management.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3