Enhanced Boiling on Microconfigured Surfaces

Author:

Wright N.1,Gebhart B.1

Affiliation:

1. Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pa. 19104

Abstract

New results are presented for pool boiling from vertical, smooth and regularly microconfigured etched silicon surfaces, in saturated water at 1 atm. All specimens were 1.27 cm square and approximately 300 μm thick. The etched microstructures were hexagonal dimples and rectangular trenches. The dimples were 4.1 μm deep and 11.5 μm across, on 22 μm centers. The trenches were 51 μm deep, 12.6 μm wide and 101 μm long, with repeat distances of 22 and 110 μm, in the two directions. The surface densities of the microstructures were 2 × 105 per cm2 for the dimples and 0.4 × 105 per cm2 for the trenches. Electrical heating was accomplished by applying an electrical potential across the phosphorous doped dry side of the silicon specimen substrate. The hexagonally dimpled specimen in the nominal nucleate pool boiling region had heat transfer increased by a factor of 4.2 over that of the smooth specimens. The heat transfer enhancement was a factor of 3.1 over the smooth specimen data, for the trenched specimen data. In the nominally convective-vaporization regime, both the smooth and microconfigured specimens had as much as 5 times the heat transfer compared to a uniform flux natural convection correlation. Comparable heat transfer measurements in subcooled water verified the experimental procedure and also indicated that only a small fraction of this large enhancement may be explained by edge effects, on these small heaters.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3