Anisotropy and Mechanical Characteristics of Ultra-High Performance Concrete and Its Interpenetrating Phase Composite With Triply Periodic Minimal Surface Architectures

Author:

Le Ba-Anh1,Tran Bao-Viet1,Vu Thai-Son2,Nguyen Quoc-Bao2,Nguyen Hoang-Quan1,Chateau Xavier3

Affiliation:

1. University of Transport and Communications , 3 Cau Giay, Lang Thuong, Dong Da, Ha Noi 11512 , Vietnam

2. Hanoi University of Civil Engineering , 55 Giai Phong, Hai Ba Trung, Ha Noi 11616 , Vietnam

3. Univ Gustave Eiffel, CNRS Navier, Ecole des Ponts, , Marne-la-Vallée 77454 , France

Abstract

Abstract This work numerically explores the anisotropy, impact phase wave propagation, buckling resistance, and natural vibration of ultra-high performance concrete (UHPC) and UHPC-steel interpenetrating phase composite (IPC) with triply periodic minimal surfaces (TPMSs), including sheet and solid gyroid, primitive, diamond, and the Schoen I-graph-wrapped package (I-WP). The experiment is conducted to verify the accuracy of the numerical model in terms of Young's modulus of polylactic acid (PLA)-based TPMS lattices and PLA-cement IPCs with TPMS cores, with the highest percent difference of 15% found for IPCs and 17% found for lattice. The results indicate that UHPC material with sheet gyroid exhibits the least extreme anisotropy in response to the varying orientation among other lattices regardless of the change of solid density, making it the ideal candidate for construction materials. Interestingly, compared to UHPC-based TPMS lattice, IPCs possess a much smaller anisotropy and exhibit almost isotropy regardless the variation of solid density and TPMS topology, offering a free selection of TPMS type to fabricate IPCs without much care of anisotropy. The phase wave velocity and buckling resistance of UHPC- and IPC-based beams with TPMSs nonlinearly decrease with a drop of TPMS solid density, but it is the almost linear pattern for the case of natural vibration frequency. UHPC material and IPC with sheet gyroid lattice are found to possess the lowest phase wave velocity and exhibit the least anisotropy of wave propagation, showing it as an ideal candidate for UHPC material to suppress the destructive energy induced by the external impact.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3