Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s12205-022-1918-z.pdf
Reference67 articles.
1. ACI 522-R10 (2010) 522-R10: ACI 522 Committee Report Adewumi AA, Owolabi TO, Alade IO, Olatunji SO (2016) Estimation of physical, mechanical and hydrological properties of permeable concrete using computational intelligence approach. Applied Soft Computing 42:342–350, DOI: https://doi.org/10.1016/j.asoc.2016.02.009
2. Asadi S, Hassan MM, Kevern JT, Rupnow TD (2012) Development of photocatalytic pervious concrete pavement for air and storm water Improvements. Transportation Research Record: Journal of the Transportation Research Board 2290:161–167, DOI: https://doi.org/10.3141/2290-21
3. Aslam F, Farooq F, Amin MN, Khan K, Waheed A, Akbar A, Javed MF, Alyousef R, Alabdulijabbar H (2020) Applications of gene expression programming for estimating compressive strength of high-strength concrete. Advances in Civil Engineering 2020, DOI: https://doi.org/10.1155/2020/8850535
4. Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B (2019) A review of the application of machine learning and data mining approaches in continuum materials mechanics. Frontiers in Materials 6, DOI: https://doi.org/10.3389/fmats.2019.00110
5. Bohdan S, Tomasz K (2013) Determination of the influence of cylindrical samples dimensions on the evaluation of concrete and wall mortar strength using ultrasound method. Procedia Engineering 57:1078–1085, DOI: https://doi.org/10.1016/j.proeng.2013.04.136
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimized gradient boosting models and reliability analysis for rock stiffness C13;Journal of Applied Geophysics;2024-09
2. Anisotropy and Mechanical Characteristics of Ultra-High Performance Concrete and Its Interpenetrating Phase Composite With Triply Periodic Minimal Surface Architectures;Journal of Applied Mechanics;2024-08-02
3. Predicting compressive strength of pervious concrete with fly ash: a machine learning approach and analysis of fly ash compositional influence;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-07-25
4. Predicting the impact strength and chloride permeability of concrete made with industrial waste and artificial sand using ANN;Innovative Infrastructure Solutions;2024-07-12
5. Response surface regression and machine learning models to predict the porosity and compressive strength of pervious concrete based on mix design parameters;Road Materials and Pavement Design;2024-07-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3