Topology Optimization of Hard-Magnetic Soft Phononic Structures for Wide Magnetically Tunable Band Gaps

Author:

Alam Zeeshan1,Sharma Atul Kumar1

Affiliation:

1. Indian Institute of Technology Jodhpur Soft Active Materials and Structures Laboratory, Department of Mechanical Engineering, , Jodhpur, Rajasthan 342030 , India

Abstract

Abstract Hard-magnetic soft materials, which exhibit finite deformation under magnetic loading, have emerged as a promising class of soft active materials for the development of phononic structures with tunable elastic wave band gap characteristics. In this paper, we present a gradient-based topology optimization framework for designing the hard-magnetic soft materials-based two-phase phononic structures with wide and magnetically tunable anti-plane shear wave band gaps. The incompressible Gent hyperelastic material model, along with the ideal hard-magnetic soft material model, is used to characterize the constitutive behavior of the hard-magnetic soft phononic structure phases. To extract the dispersion curves, an in-house finite element model in conjunction with Bloch’s theorem is employed. The method of moving asymptotes is used to iteratively update the design variables and obtain the optimal distribution of the hard-magnetic soft phases within the phononic structure unit cell. Analytical sensitivity analysis is performed to evaluate the gradient of the band gap maximization function with respect to each one of the design variables. Numerical results show that the optimized phononic structures exhibit a wide band gap width in comparison to a standard hard-magnetic soft phononic structure with a central circular inclusion, demonstrating the effectiveness of the proposed numerical framework. The numerical framework presented in this study, along with the derived conclusions, can serve as a valuable guide for the design and development of futuristic tunable wave manipulators.

Publisher

ASME International

Reference71 articles.

1. Pros and Cons: Magnetic Versus Optical Microrobots;Sitti;Adv. Mater.,2020

2. Multifunctional Magnetic Soft Composites: A Review;Wu;Multifunct. Mater.,2020

3. Hard-Magnetic Elastica;Wang;J. Mech. Phys. Solids,2020

4. Mechanics of Hard-Magnetic Soft Materials;Zhao;J. Mech. Phys. Solids,2019

5. Theory of Hard Magnetic Soft Materials to Create Magnetoelectricity;Rahmati;J. Mech. Phys. Solids,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3