A Method for Inverse Robot Calibration

Author:

Shamma J. S.1,Whitney D. E.2

Affiliation:

1. Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, Mass. 02139

2. Charles Stark Draper Laboratory, Cambridge, Mass. 02139

Abstract

A method is described for the inverse calibration of a manipulator or robot. Inverse calibration is defined to be finding the joint angles necessary to drive a robot to a desired endpoint location. The joint angles recommended by the robot controller’s internal model will not, in general, drive the robot to the desired location because of inaccuracies in this model. Inverse calibration seeks to reduce the error. Unlike previous work in calibration, the method reported here does not require modeling any specific phenomena that may cause the error; hence it is not limited in accuracy by inability to identify all the error sources. The method consists of finding approximation functions by which corrections are made to the encoder readings recommended by the robot’s internal model. These functions are found by measuring the error at discrete locations throughout a region of the robot’s workspace and then least-squares fitting third order trivariate polynomials to the error samples. A forward calibration (one which reports actual tool location from given encoder readings) based on the above method is also described. The inverse calibration is tested on a six DOF PUMA simulation. Results show that the endpoint location error can be reduced from an average of about 1.2 mm down to an average of about 0.12 mm.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3