A Coupled-Mode, Phase-Resolving Model for the Transformation of Wave Spectrum Over Steep 3D Topography: Parallel-Architecture Implementation

Author:

Gerostathis Th. P.1,Belibassakis K. A.2,Athanassoulis G. A.1

Affiliation:

1. School of Naval Architecture and Marine Engineering, National Technical University of Athens, Athens 15780, Greece

2. Department of Naval Architecture, Technological Educational Institute of Athens, Athens 12210, Greece

Abstract

The problem of transformation of the directional spectrum of an incident wave system over an intermediate-depth region of strongly varying 3D bottom topography is studied in the context of linear theory. The consistent coupled-mode model, developed by Athanassoulis and Belibassakis (J. Fluid Mech. 389, pp. 275–301 (1999)) and extended to three dimensions by Belibassakis et al. (Appl. Ocean Res. 23(6), pp. 319–336 (2001)) is exploited for the calculation of the linear transfer function, connecting the incident wave with the wave conditions at each point in the field. This model is fully dispersive and takes into account reflection, refraction, and diffraction phenomena, without any simplification apart the standard intermediate-depth linearization. The present approach permits the calculation of spectra of all interesting wave quantities (e.g., surface elevation, velocity, pressure) at every point in the liquid domain. The application of the present model to realistic geographical areas requires a vast amount of calculations, calling for the exploitation of advanced computational technologies. In this work, a parallel implementation of the model is developed, using the message passing programming paradigm on a commodity computer cluster. In that way, a direct numerical solution is made feasible for an area of 25km2 over Scripps and La Jolla submarine canyons in Southern California, where a large amount of wave measurements are available. A comparison of numerical results obtained by the present model with field measurements of free-surface frequency spectra transformation is presented, showing excellent agreement. The present approach can be extended to treat weakly nonlinear waves, and it can be further elaborated for studying wave propagation over random bottom topography.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference35 articles.

1. Computation of Combined Refraction-Diffraction;Berkhoff

2. A General Wave Equation for Waves Over Rippled Beds;Kirby;J. Fluid Mech.

3. A Note on the Accuracy of the Mild-Slope Equation;Booij;Coastal Eng.

4. Topographical Scattering of Gravity Waves;Miles;J. Fluid Mech.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3