Enhanced Mild-Slope Wave Model with Parallel Implementation and Artificial Neural Network Support for Simulation of Wave Disturbance and Resonance in Ports

Author:

Chondros Michalis K.12ORCID,Metallinos Anastasios S.12,Papadimitriou Andreas G.12

Affiliation:

1. Laboratory of Harbour Works, School of Civil Engineering, National Technical University of Athens, 5 Heroon Polytechniou Str., 15780 Zografou, Greece

2. Scientia Maris, Agias Paraskevis Str. 117, 15234 Chalandri, Greece

Abstract

Ensuring sea surface tranquility within port basins is of paramount importance for safe and efficient port operations and vessels’ accommodation. The present study aims to introduce a robust numerical model based on mild-slope equations, capable of accurately simulating wave disturbance and resonance in ports. The model is further enhanced by the integration of an artificial neural network (ANN) to address partial reflection, and its efficiency is optimized by developing a parallel algorithm based on OpenMP, allowing for a reduction in the required simulation times for real port areas spanning several kilometers horizontally. Numerous numerical experiments focusing on wave reflection against a vertical wall were conducted to develop the ANN. This neural network was designed to determine the appropriate value of the eddy viscosity coefficient, a crucial parameter in the momentum equation of the mild-slope model, tailored to incident wave characteristics. The model’s validity was confirmed through rigorous validation against experimental measurements, covering wave disturbance, rectangular harbor resonance, and Bragg resonance. The model consistently demonstrated a more than satisfactory performance across all considered scenarios. In a practical application, the model was deployed in the Port of Rethymno, Crete Island, Greece, effectively capturing and describing dominant phenomena within the port area. The implementation of a parallel algorithm significantly reduced the simulation times by ~92%, compared to the serial algorithm, thereby enhancing the model’s efficiency and applicability in real-world port environments.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3