Stiffness Properties of Adventitia, Media, and Full Thickness Human Atherosclerotic Carotid Arteries in the Axial and Circumferential Directions

Author:

Hoffman Allen H.1,Teng Zhongzhao23,Zheng Jie4,Wu Zheyang5,Woodard Pamela K.4,Billiar Kristen L.6,Wang Liang7,Tang Dalin89

Affiliation:

1. Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609

2. Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609;

3. Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK

4. Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110

5. Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609

6. Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609

7. School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

8. School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;

9. Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609 e-mail:

Abstract

Arteries can be considered as layered composite material. Experimental data on the stiffness of human atherosclerotic carotid arteries and their media and adventitia layers are very limited. This study used uniaxial tests to determine the stiffness (tangent modulus) of human carotid artery sections containing American Heart Association type II and III lesions. Axial and circumferential oriented adventitia, media, and full thickness specimens were prepared from six human carotid arteries (total tissue strips: 71). Each artery yielded 12 specimens with two specimens in each of the following six categories; axial full thickness, axial adventitia (AA), axial media (AM), circumferential full thickness, circumferential adventitia (CA), and circumferential media (CM). Uniaxial testing was performed using Inspec 2200 controlled by software developed using labview. The mean stiffness of the adventitia was 3570 ± 667 and 2960 ± 331 kPa in the axial and circumferential directions, respectively, while the corresponding values for the media were 1070 ± 186 and 1800 ± 384 kPa. The adventitia was significantly stiffer than the media in both the axial (p = 0.003) and circumferential (p = 0.010) directions. The stiffness of the full thickness specimens was nearly identical in the axial (1540 ± 186) and circumferential (1530 ± 389 kPa) directions. The differences in axial and circumferential stiffness of media and adventitia were not statistically significant.

Funder

National Institutes of Health

National Natural Science Foundation of China

Science and Technology Support Program of Jiangsu Province

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3