Robust Contact Computation in Non-Rigid Variation Simulation

Author:

Tabar Roham Sadeghi1,Lorin Samuel2,Lindkvist Lars1,Wärmefjord Kristina1,Söderberg Rikard1

Affiliation:

1. Chalmers University of Technology Department of Industrial and Materials Science, , Gothenburg SE-412 96 , Sweden

2. Fraunhofer Chalmers Center , Gothenburg SE-412 88 , Sweden

Abstract

Abstract In non-rigid variation simulation, contact modeling is used to avoid the virtual penetration of the components in the adjacent areas. Numerical errors and convergence issues due to the deformation behavior of the interacting surfaces are limiting the computational efficiency of solving the contact problem. In this paper, a quadratic programming approach has been introduced based on the Lagrangian multiplier method for robust contact modeling in non-rigid variation simulation, and the performance of the proposed approach has been compared to the previously applied iterative and barrier function methods. The methods have been compared on three industrial reference cases, and the convergence and time-efficiency of each method are compared. The results show that robust optimization of the quadratic program associated with the contact model is highly dependent on the reduced stiffness matrix condition. Furthermore, it has been shown that robust and efficient contact computation in non-rigid variation simulation is achievable through the proposed augmented Lagrangian method.

Funder

VINNOVA

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3