Cavitation Damage Studies With Rotating Disk in Water

Author:

Wood G. M.1,Knudsen L. K.1,Hammitt F. G.2

Affiliation:

1. Pratt & Whitney Aircraft, Division of United Aircraft Corporation, East Hartford, Conn.

2. The University of Michigan, Ann Arbor, Mich.

Abstract

The cavitation damage resistance of alloys of aluminum, columbium (niobium), tantalum, molybdenum, and stainless steel was evaluated in water using a rotating disk apparatus that simulated the cavitation vortex patterns encountered in pumps operating at high suction specific speed. The alloys in decreasing order of cavitation resistance were Ta-8W-2Hf, Cb-18W-8Hf, Ta-10W, 316SS, Mo-.5Ti, Cb-1Zr, Al-4Cu-.7Mn-.5Mg, and Al-2.5Mg-.25Cr. The damage resistance order does not follow the variation of any single property such as strain energy to failure, yield strength, or hardness, but appears to be a combination of mechanical properties and phase structure. Photomicrographs show predominant intergranular cracking for the molybdenum alloy and transgranular erosion and cracking for the remaining alloys tested. The second phase precipitate in the aluminum alloy appears to hinder the erosion of material. Investigation of small variations in the grain size of the heat-treated Cb-1Zr alloys resulted in some variation in damage resistance, with the largest grain structure exhibiting the highest resistance. Correlation curves of volume loss as a function of the peripheral velocity are presented for all materials tested. In addition, the operation of the rotating disk apparatus itself was examined in considerable detail and the effects of various design changes were evaluated.

Publisher

ASME International

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3