Cavitation Damage Prediction in Mercury Target for Pulsed Spallation Neutron Source Using Monte Carlo Simulation

Author:

Wakui Takashi1,Takagishi Yoichi2,Futakawa Masatoshi1

Affiliation:

1. J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

2. Kobelco Research Institute Inc., Kobe 651-2271, Japan

Abstract

Cavitation damage on a mercury target vessel for a pulsed spallation neutron source is induced by a proton beam injection in mercury. Cavitation damage is one of factors affecting the allowable beam power and the life time of a mercury target vessel. The prediction method of the cavitation damage using Monte Carlo simulations was proposed taking into account the uncertainties of the core position of cavitation bubbles and impact pressure distributions. The distribution of impact pressure attributed to individual cavitation bubble collapsing was assumed to be Gaussian distribution and the probability distribution of the maximum value of impact pressures was assumed to be three kinds of distributions: the delta function and Gaussian and Weibull distributions. Two parameters in equations describing the distribution of impact pressure were estimated using Bayesian optimization by comparing the distribution of the cavitation damage obtained from the experiment with the distribution of the accumulated plastic strain obtained from the simulation. Regardless of the distribution type, the estimated maximum impact pressure was 1.2–2.9 GPa and existed in the range of values predicted by the ratio of the diameter and depth of the pit. The estimated dispersion of the impact pressure distribution was 1.0–1.7 μm and corresponded to the diameter of major pits. In the distribution of the pits described by the accumulated plastic strain, which was assumed in three cases, the delta function and Gaussian and Weibull distributions, the Weibull distribution agreed well with the experimental results, particularly including relatively large pit size. Furthermore, the Weibull distribution reproduced the depth profile, i.e., pit shape, better than that using the delta function or Gaussian distribution. It can be said that the cavitation erosion phenomenon is predictable by adopting the Weibull distribution. This prediction method is expected to be applied to predict the cavitation damage in fluid equipment such as pumps and fluid parts.

Publisher

MDPI AG

Subject

General Materials Science

Reference45 articles.

1. Effect of Extrusion Ratio in Hot-Extrusion on Kink Deformation during Compressive Deformation in an αMg/LPSO Dual-Phase Magnesium Alloy Monitored by In Situ Neutron Diffraction;Harjo;Mater. Trans.,2023

2. Re-evaluation of protein neutron crystallography with and without X-ray/neutron joint refinement;Murakawa;IUCrJ,2022

3. Neutron reflectometry to measure in situ the rate determining step of lithium ion transport through thin silicon layers and interfaces;Huger;Phys. Chem. Chem. Phys.,2019

4. (2023, June 01). Mlf Annual Report 2021. Available online: https://mlfinfo.jp/_src/resource/PKrrqrH8Ai/MLF_AR2021.pdf.

5. Targetry overview—Various target concept and expectable next generation targets in power frontier applications;Futakawa;JPS Conf. Proc.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3