Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors

Author:

Van Zante Dale E.1,Strazisar Anthony J.1,Wood Jerry R.1,Hathaway Michael D.2,Okiishi Theodore H.3

Affiliation:

1. NASA Lewis Research Center, Cleveland, OH 44135

2. US Army Vehicle Technology Center, Cleveland, OH 44135

3. Iowa State University, Ames, IA 50011

Abstract

The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. A wall-bounded shear layer formed by the relative motion between the overtip leakage flow and the shroud wall is found to have a major influence on the development of the tip clearance flow field. This shear layer, which has not been recognized by earlier investigators, impacts the stable operating range of the rotor. Simulation accuracy is dependent on the ability of the numerical code to resolve this layer. While numerical simulations of these flows are quite sophisticated, they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip-clearance flow details (e.g., trajectory and radial extent) with corresponding data obtained from a numerical simulation. Laser-Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor is simulated using a Navier–Stokes turbomachinery solver that incorporates an advanced k–ε turbulence model derived for flows that are not in local equilibrium. A simple method is presented for determining when the wall-bounded shear layer is an important component of the tip clearance flow field. [S0889-504X(00)02504-6]

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3