Dynamic Analysis of Piston Secondary Motion for Small Reciprocating Compressors

Author:

Prata A. T.1,Fernandes J. R. S.1,Fagotti F.2

Affiliation:

1. Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Floriano´polis, SC-Brazil

2. Brazilian Compressor Industry—EMBRACO, 89219-901 Joinville, SC-Brazil

Abstract

Piston dynamics plays a fundamental role in two critical processes related to fluid flow in reciprocating compressors. The first is the gas leakage through the radial clearance, which may cause considerable loss in the pumping efficiency of the compressor. The second process is the viscous friction associated with the lubricant film in the radial clearance. In the present contribution a numerical simulation is performed for a ringless piston inside the cylinder of a reciprocating compressor, including both the axial and the radial piston motion. The compressor considered here is a small hermetic compressor employed in domestic refrigerators, with the radial clearance between piston and cylinder filled with lubricant oil. In operation, the piston moves up and down along the axis of the cylinder, but the radial oscillatory motion in the cylinder bore, despite being usually small, plays a very important role on the compressor performance and reliability. The compromise between oil leakage through the piston-cylinder clearance and the friction losses requires a detailed analysis of the oscillatory motion for a good design. All corresponding forces and moments are included in the problem formulation of the piston dynamics in order to determine the piston trajectory, velocity and acceleration at each time step. The hydrodynamic force is obtained from the integration of the pressure distribution on the piston skirt, which, in turn, is determined from a finite volume solution of the time dependent equation that governs the oil flow. A Newton-Raphson procedure was employed in solving the equations of the piston dynamics. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction losses. Emphasis was placed on investigating the influence of the pin location, radial clearance and oil viscosity on the piston dynamics. [S0742-4787(11)00301-8]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3