A Numerical Analysis for Piston Skirts in Mixed Lubrication: Part II—Deformation Considerations

Author:

Zhu Dong1,Hu Yuan-Zhong1,Cheng Herbert S.1,Arai Takayuki2,Hamai Kyugo2

Affiliation:

1. Center for Engineering Tribology, Northwestern University, Evanston, Illinois 60208

2. Engine and Powertrain Research Laboratory, Central Engineering Laboratories, Nissan Motor Company, Yokosuka, 237 Japan

Abstract

This paper presents a mathematical model for piston skirts in mixed lubrication. It takes into account the effects of surface waviness, roughness, piston skirt surface profile, bulk elastic deformation and thermal distortion of both piston skirts and cylinder bore on piston motion, lubrication and friction. The corresponding computer program developed can be used to calculate the entire piston trajectory and the hydrodynamic and contact friction forces as functions of crank angle under engine running conditions. Complete distributions of the oil film thickness and elastic deformation as well as the hydrodynamic and contact pressures can also be given at any crank angle if needed. This paper is the second part of a series of two papers. The first part (Basic Modeling), presented earlier by Zhu et al. (1991), gave the basic formulation and some preliminary results without bulk deformation considerations. In the present part, the three-dimensional finite element method is used to calculate so-called influence coefficient matrices. These matrices are repeatedly used to compute bulk elastic deformations of piston skirts. Results for 12 different cases are presented, and discussions are given focusing on the influences of elastic and thermal deformations on piston motion, lubrication and friction. An attempt to compare the calculated friction with experimental data is made, and agreement appears good for the two available cases. The computer program presented should be a useful tool for piston design and development.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3