Case-Based Reasoning for Evolutionary MEMS Design

Author:

Cobb Corie L.1,Agogino Alice M.2

Affiliation:

1. Palo Alto Research Center (PARC), 3333 Coyote Hill Road, Palo Alto, CA 94304

2. Department of Mechanical Engineering, University of California at Berkeley, 6102 Etcheverry Hall, Berkeley, CA 94720-1740

Abstract

A knowledge-based computer-aided design tool for microelectromechanical systems (MEMS) design synthesis called case-based synthesis of MEMS (CaSyn-MEMS) has been developed. MEMS-based technologies have the potential to revolutionize many consumer products and to create new market opportunities in areas such as biotechnology, aerospace, and data communications. However, the commercialization of MEMS still faces many challenges due to a lack of efficient computer-aided design tools that can assist designers during the early conceptual phases of the design process. CaSyn-MEMS combines a case-based reasoning (CBR) algorithm and a MEMS case library with parametric optimization and a multi-objective genetic algorithm (MOGA) to synthesize new MEMS design topologies that meet or improve upon a designer’s specifications. CBR is an artificial intelligence methodology that uses past design solutions and adapts them to solve current problems. Having the ability to draw upon past design knowledge is advantageous to MEMS designers, allowing reuse and modification of previously successful designs to accelerate the design process. To enable knowledge reuse, a hierarchical MEMS case library has been created. A reasoning algorithm retrieves cases with solved problems similar to the current design problem. Focusing on resonators as a case study, case retrieval demonstrated an 82% success rate. Using the retrieved cases, approximate design solutions were proposed by first adapting cases with parametric optimization, resulting in a 25% reduction in design area on average while bringing designs within 2% of the frequency goal. In situations where parametric optimization was not sufficient, a more radical design adaptation was performed through the use of MOGA. CBR provided MOGA with good starting points for optimization, allowing efficient convergence to higher quantities of Pareto optimal design concepts while reducing design area by up to 43% and meeting frequency goals within 5%.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference41 articles.

1. Design Synthesis of Microelectromechanical Systems Using Genetic Algorithms With Component-Based Genotype Representation;Zhang

2. Evolutionary Synthesis of Microelectromechanical Systems (MEMS) Design;Zhou

3. The Role of Constraints and Human Interaction in Evolving MEMS Designs: Microresonator Case Study;Kamalian

4. The Resonant Gate Transistor;Nathanson;IEEE Trans. Electron Devices

5. Markets and Applications for MEMS Inertial Sensors;Dixon

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3