Role of Nominal Stress State on Cyclic Fatigue Durability of SAC305 Grain-Scale Solder Joints

Author:

Deshpande Abhishek1,Jiang Qian1,Dasgupta Abhijit1,Becker Ulrich2

Affiliation:

1. CALCE, University of Maryland, College Park, MD 20742

2. Robert Bosch GmbH, Postfach 300240, Stuttgart 70442, Germany

Abstract

Abstract Solder joints in micro-electronic assemblies experience a multiaxial combination of extensional and shear loads due to combinations of thermal expansion mismatch and flexure of printed circuit assemblies during thermal cycling or during vibrational loading of constrained printed circuit assemblies. Although a significant amount of research has been conducted to study cyclic fatigue failures of solder joints under pure-shear loading, most of the current literature on cyclic tensile loading of solders is on long dog-boned monolithic solder coupons. Unfortunately, such specimens do not capture the critical interactions between key microscale morphological features (such as grain orientation, grain boundaries, intermetallic compounds, and substrates) that are believed to play important roles in the fatigue of functional solder joints under life-cycle loading. Therefore, this paper uses a combination of experiments and finite element analysis to investigate the differences in mechanisms of cyclic fatigue damage in Sn-3.0Ag-0.5Cu (SAC305) few-grained (oligocrystalline) microscale solder joints under shear, tensile and multiaxial loading modes at room temperature. Cyclic fatigue durability test results indicate that tensile loads are more detrimental compared to shear loads. Tensile versus shear loading modes are found to cause distinctly different combinations of interfacial damage versus internal damage in the bulk of the solder (transgranular and intergranular damage), which correlates with the differences observed in the resulting fatigue durability. The test results also confirm that the traditional approach of assuming a power-law dependence on equivalent deviatoric strain amplitude is inadequate for modeling cyclic fatigue durability of solder interconnects experiencing multiaxial loading. Instead, multiaxial fatigue damage results are seen to be affected not only by the cyclic equivalent strain amplitudes but also by the severity of the stress-triaxiality, as hypothesized in models such as Chaboche model.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Shelf Life Evaluation Method for Electronic and Other Components Using a Physics of Failure (PoF) Approach,2017

2. Experimental and Numerical Investigation of Fatigue Damage Development Under Multiaxial Loads in a Lead-Free Sn-Based Solder Alloy,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3