The Simulation of Mixing Layers Driven by Compound Buoyancy and Shear

Author:

Snider D. M.1,Andrews M. J.2

Affiliation:

1. Science Applications International Corporation, 2109 Air Park, SE, Albuquerque, NM 87106

2. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

Fully developed compound shear and buoyancy driven mixing layers are predicted using a k-ε turbulence model. Such mixing layers present an exchange of equilibrium in mixing flows. The k-ε buoyancy constant Cε3 = 0.91, defined in this study for buoyancy unstable mixing layers, is based on an approximate self-similar analysis and an accurate numerical solution. One-dimensional transient and two-dimensional steady calculations are presented for buoyancy driven mixing in a uniform flow field. Two-dimensional steady calculations are presented for compound shear and buoyancy driven mixing. The computed results for buoyancy alone and compound shear and buoyancy mixing compare well with measured data. Adding shear to an unstable buoyancy mixing layer does not increase the mixing growth rate compared with that from buoyancy alone. The nonmechanistic k-ε model which balances energy generation and dissipation using constants from canonical shear and buoyancy studies predicts the suppression of the compound mixing width. Experimental observations suggest that a reduction in growth rate results from unequal stream velocities that skew and stretch the normally vertical buoyancy plumes producing a reduced mixing envelope width.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3