Exergy Analysis and Sustainability Assessment of a Solar-Ground Based Heat Pump With Thermal Energy Storage

Author:

Caliskan Hakan1,Hepbasli Arif2,Dincer Ibrahim3

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Ege University, TR-35100, Izmir, Turkey

2. Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

3. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada

Abstract

In this study, both energy and exergy analyses and sustainability assessment of a thermal energy storage system with a solar-ground coupled heat pump installed in a 120 m2 house are performed. The actual operating data taken from the literature are utilized for model validation. The system considered here mainly consists of a solar collection system, an underground thermal storage system, an indoor air conditioning system, and a data collection system. First, energy analysis is employed to the system and its components, and the rates of energy input (solar radiation), energy storage, collector heat loss, and other heat loss are found to be 4.083 kW, 1.753 kW, 1.29 kW, and 1.04 kW for a 5 h working time, respectively, while the energy efficiency of the system is calculated to be 42.94%. Exergy analysis of the entire system is then conducted for various reference temperatures varying from 0°C to 25°C with a temperature interval of 5°C. As a result of this analysis, the rates of the maximum exergy input, exergy storage, and exergy losses are determined for a reference temperature of 0°C to be 0.585 kW, 0.24 kW, and 0.345 kW, respectively. Finally, the maximum exergy efficiency of the system is obtained to be 40.99% and the maximum sustainable development using sustainability index, which is a function of exergy efficiency, is calculated to be 1.6946 for a reference temperature of 0°C. Furthermore, the energy and exergy results are illustrated through Sankey (energy flow) and Grassmann (exergy loss and flow) diagrams.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3