Affiliation:
1. University College Cork, Cork, Ireland
2. University of Genova, Genova, Italy
Abstract
Abstract
This paper presents a nonlinear model of an inversion-based generalized cross-spring pivot (IG-CSP) using the beam constraint model (BCM), which can be employed for the geometric error analysis and the characteristic analysis of an inversion-based symmetric cross-spring pivot (IS-CSP). The load-dependent effects are classified in two ways, including structure load-dependent effects and beam load-dependent effects, where the loading positions, geometric parameters of elastic flexures, and axial forces are the main contributing factors. The closed-form load-rotation relations of an IS-CSP and a non-inversion-based symmetric cross-spring pivot (NIS-CSP) are derived with consideration of the three contributing factors for analyzing the load-dependent effects. The load-dependent effects of IS-CSP and NIS-CSP are compared when the loading position is fixed. The rotational stiffness of the IS-CSP or NIS-CSP can be designed to increase, decrease, or remain constant with axial forces, by regulating the balance between the loading positions and the geometric parameters. The closed-form solution of the center shift of an IS-CSP is derived. The effects of axial forces on the IS-CSP center shift are analyzed and compared with those of a NIS-CSP. Finally, based on the nonlinear analysis results of IS-CSP and NIS-CSP, two new compound symmetric cross-spring pivots are presented and analyzed via analytical and FEA models.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献