Affiliation:
1. Georgia Institute of Technology, Atlanta, GA
2. Tucker Innovations Inc., Waxhaw, NC
Abstract
The lack of plug-and-play programmability in conventional toolpath planning approach in subtractive manufacturing, i.e., machining leads to significantly higher manufacturing cost for CNC based prototyping. In computer aided manufacturing (CAM) packages, typical B-rep or NURBS based representations of the CAD interfaces challenge core computations of tool trajectories generation process, such as, surface offsetting to be completely automated. In this work, the problem of efficient generation of free-form surface offsets is addressed with a novel volumetric representation. It presents an image filter based offsetting algorithm, which leverages the parallel computing engines on modern graphics processor unit (GPU). The scalable voxel data structure and the proposed hardware-accelerated volumetric offsetting together advance the computation and memory efficiencies well beyond the capability of past studies. Additionally, in order to further accelerate the offset computation the problem of offsetting with a large distance is decomposed into successive offsetting using smaller distances. The accuracy of the offset algorithms is thoroughly analyzed. The developed GPU implementation of the offsetting algorithm is robust in computation, easy to comprehend, and achieves a 50-fold speedup on single graphics card (NVIDIA GTX780Ti) relative to prior best-performing dual socket quad-core CPU implementation.
Publisher
American Society of Mechanical Engineers
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献