A Graphical Approach for Freeform Surface Offsetting With GPU Acceleration for Subtractive 3D Printing

Author:

Hossain Mohammad M.1,Vuduc Richard W.1,Nath Chandra1,Kurfess Thomas R.1,Tucker Thomas M.2

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

2. Tucker Innovations Inc., Waxhaw, NC

Abstract

The lack of plug-and-play programmability in conventional toolpath planning approach in subtractive manufacturing, i.e., machining leads to significantly higher manufacturing cost for CNC based prototyping. In computer aided manufacturing (CAM) packages, typical B-rep or NURBS based representations of the CAD interfaces challenge core computations of tool trajectories generation process, such as, surface offsetting to be completely automated. In this work, the problem of efficient generation of free-form surface offsets is addressed with a novel volumetric representation. It presents an image filter based offsetting algorithm, which leverages the parallel computing engines on modern graphics processor unit (GPU). The scalable voxel data structure and the proposed hardware-accelerated volumetric offsetting together advance the computation and memory efficiencies well beyond the capability of past studies. Additionally, in order to further accelerate the offset computation the problem of offsetting with a large distance is decomposed into successive offsetting using smaller distances. The accuracy of the offset algorithms is thoroughly analyzed. The developed GPU implementation of the offsetting algorithm is robust in computation, easy to comprehend, and achieves a 50-fold speedup on single graphics card (NVIDIA GTX780Ti) relative to prior best-performing dual socket quad-core CPU implementation.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3