Intensity-Based Registration With Voxel-Based Computer-Aided Manufacturing for Adaptive Machining

Author:

Collins James S.1,Tucker Tommy2,Kurfess Thomas1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA 30332

2. Tucker Innovations Inc., Charlotte, NC 28173

Abstract

Abstract This paper presents a novel application of intensity-based volume registration to manufacturing using voxel-based computer-aided manufacturing (CAM) models. The introduced techniques are presented in the context of machining irregularly shaped materials by integrating volumetric imaging feedback to computer numerical control (CNC) machine tools. This requires a comparison and alignment to be performed in the software to geometrically “fit” the source design model inside a rendered starting material. The requirements differ from many typical registration applications in that the workpiece will necessarily be larger (i.e., greater in volume) than the desired final computer-aided design (CAD) file. Therefore, models need to be aligned for toolpath generation to workpiece counterparts that have been either volumetrically offset or contain additional material/volume. Intensity-based registrations are unique in that they consider only the voxel values over the entire volume. Although advancements in medical imaging have produced efficient, robust voxel registration algorithms, these techniques have not yet been applied to manufacturing. This research introduces the use of maximization of mutual information (MMI) for voxel-based CAM to drive an alignment registration for systems integrating imaging technology. A simple but novel method, which the authors have named minimization of distance variance (MDV), is also introduced. This minimizes the variance between voxel intensities to demonstrate the design of a similarity metric for a simple case in machining rough castings.

Funder

NSF

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3